Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Monothiol glutaredoxins can bind linear [Fe3S4]+ and [Fe4S4]2+ clusters in addition to [Fe2S2]2+ clusters: spectroscopic characterization and functional implications.

Identifieur interne : 000735 ( Main/Exploration ); précédent : 000734; suivant : 000736

Monothiol glutaredoxins can bind linear [Fe3S4]+ and [Fe4S4]2+ clusters in addition to [Fe2S2]2+ clusters: spectroscopic characterization and functional implications.

Auteurs : Bo Zhang [États-Unis] ; Sibali Bandyopadhyay ; Priyanka Shakamuri ; Sunil G. Naik ; Boi Hanh Huynh ; Jérémy Couturier ; Nicolas Rouhier ; Michael K. Johnson

Source :

RBID : pubmed:24032439

Descripteurs français

English descriptors

Abstract

Saccharomyces cerevisiae mitochondrial glutaredoxin 5 (Grx5) is the archetypical member of a ubiquitous class of monothiol glutaredoxins with a strictly conserved CGFS active-site sequence that has been shown to function in biological [Fe2S2](2+) cluster trafficking. In this work, we show that recombinant S. cerevisiae Grx5 purified aerobically, after prolonged exposure of the cell-free extract to air or after anaerobic reconstitution in the presence of glutathione, predominantly contains a linear [Fe3S4](+) cluster. The excited-state electronic properties and ground-state electronic and vibrational properties of the linear [Fe3S4](+) cluster have been characterized using UV-vis absorption/CD/MCD, EPR, Mössbauer, and resonance Raman spectroscopies. The results reveal a rhombic S = 5/2 linear [Fe3S4](+) cluster with properties similar to those reported for synthetic linear [Fe3S4](+) clusters and the linear [Fe3S4](+) clusters in purple aconitase. Moreover, the results indicate that the Fe-S cluster content previously reported for many monothiol Grxs has been misinterpreted exclusively in terms of [Fe2S2](2+) clusters, rather than linear [Fe3S4](+) clusters or mixtures of linear [Fe3S4](+) and [Fe2S2](2+) clusters. In the absence of GSH, anaerobic reconstitution of Grx5 yields a dimeric form containing one [Fe4S4](2+) cluster that is competent for in vitro activation of apo-aconitase, via intact cluster transfer. The ligation of the linear [Fe3S4](+) and [Fe4S4](2+) clusters in Grx5 has been assessed by spectroscopic, mutational, and analytical studies. Potential roles for monothiol Grx5 in scavenging and recycling linear [Fe3S4](+) clusters released during protein unfolding under oxidative stress conditions and in maturation of [Fe4S4](2+) cluster-containing proteins are discussed in light of these results.

DOI: 10.1021/ja407059n
PubMed: 24032439
PubMed Central: PMC3836218


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Monothiol glutaredoxins can bind linear [Fe3S4]+ and [Fe4S4]2+ clusters in addition to [Fe2S2]2+ clusters: spectroscopic characterization and functional implications.</title>
<author>
<name sortKey="Zhang, Bo" sort="Zhang, Bo" uniqKey="Zhang B" first="Bo" last="Zhang">Bo Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia , Athens, Georgia 30602, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia , Athens, Georgia 30602</wicri:regionArea>
<wicri:noRegion>Georgia 30602</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bandyopadhyay, Sibali" sort="Bandyopadhyay, Sibali" uniqKey="Bandyopadhyay S" first="Sibali" last="Bandyopadhyay">Sibali Bandyopadhyay</name>
</author>
<author>
<name sortKey="Shakamuri, Priyanka" sort="Shakamuri, Priyanka" uniqKey="Shakamuri P" first="Priyanka" last="Shakamuri">Priyanka Shakamuri</name>
</author>
<author>
<name sortKey="Naik, Sunil G" sort="Naik, Sunil G" uniqKey="Naik S" first="Sunil G" last="Naik">Sunil G. Naik</name>
</author>
<author>
<name sortKey="Huynh, Boi Hanh" sort="Huynh, Boi Hanh" uniqKey="Huynh B" first="Boi Hanh" last="Huynh">Boi Hanh Huynh</name>
</author>
<author>
<name sortKey="Couturier, Jeremy" sort="Couturier, Jeremy" uniqKey="Couturier J" first="Jérémy" last="Couturier">Jérémy Couturier</name>
</author>
<author>
<name sortKey="Rouhier, Nicolas" sort="Rouhier, Nicolas" uniqKey="Rouhier N" first="Nicolas" last="Rouhier">Nicolas Rouhier</name>
</author>
<author>
<name sortKey="Johnson, Michael K" sort="Johnson, Michael K" uniqKey="Johnson M" first="Michael K" last="Johnson">Michael K. Johnson</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:24032439</idno>
<idno type="pmid">24032439</idno>
<idno type="doi">10.1021/ja407059n</idno>
<idno type="pmc">PMC3836218</idno>
<idno type="wicri:Area/Main/Corpus">000706</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000706</idno>
<idno type="wicri:Area/Main/Curation">000706</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000706</idno>
<idno type="wicri:Area/Main/Exploration">000706</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Monothiol glutaredoxins can bind linear [Fe3S4]+ and [Fe4S4]2+ clusters in addition to [Fe2S2]2+ clusters: spectroscopic characterization and functional implications.</title>
<author>
<name sortKey="Zhang, Bo" sort="Zhang, Bo" uniqKey="Zhang B" first="Bo" last="Zhang">Bo Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia , Athens, Georgia 30602, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia , Athens, Georgia 30602</wicri:regionArea>
<wicri:noRegion>Georgia 30602</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bandyopadhyay, Sibali" sort="Bandyopadhyay, Sibali" uniqKey="Bandyopadhyay S" first="Sibali" last="Bandyopadhyay">Sibali Bandyopadhyay</name>
</author>
<author>
<name sortKey="Shakamuri, Priyanka" sort="Shakamuri, Priyanka" uniqKey="Shakamuri P" first="Priyanka" last="Shakamuri">Priyanka Shakamuri</name>
</author>
<author>
<name sortKey="Naik, Sunil G" sort="Naik, Sunil G" uniqKey="Naik S" first="Sunil G" last="Naik">Sunil G. Naik</name>
</author>
<author>
<name sortKey="Huynh, Boi Hanh" sort="Huynh, Boi Hanh" uniqKey="Huynh B" first="Boi Hanh" last="Huynh">Boi Hanh Huynh</name>
</author>
<author>
<name sortKey="Couturier, Jeremy" sort="Couturier, Jeremy" uniqKey="Couturier J" first="Jérémy" last="Couturier">Jérémy Couturier</name>
</author>
<author>
<name sortKey="Rouhier, Nicolas" sort="Rouhier, Nicolas" uniqKey="Rouhier N" first="Nicolas" last="Rouhier">Nicolas Rouhier</name>
</author>
<author>
<name sortKey="Johnson, Michael K" sort="Johnson, Michael K" uniqKey="Johnson M" first="Michael K" last="Johnson">Michael K. Johnson</name>
</author>
</analytic>
<series>
<title level="j">Journal of the American Chemical Society</title>
<idno type="eISSN">1520-5126</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aconitate Hydratase (metabolism)</term>
<term>Apoenzymes (metabolism)</term>
<term>Enzyme Activation (MeSH)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Glutathione (metabolism)</term>
<term>Iron (metabolism)</term>
<term>Protein Binding (MeSH)</term>
<term>Saccharomyces cerevisiae (enzymology)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Spectrum Analysis (MeSH)</term>
<term>Sulfur (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Aconitate hydratase (métabolisme)</term>
<term>Activation enzymatique (MeSH)</term>
<term>Analyse spectrale (MeSH)</term>
<term>Apoenzymes (métabolisme)</term>
<term>Fer (métabolisme)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Glutathion (métabolisme)</term>
<term>Liaison aux protéines (MeSH)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Saccharomyces cerevisiae (enzymologie)</term>
<term>Soufre (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Aconitate Hydratase</term>
<term>Apoenzymes</term>
<term>Glutaredoxins</term>
<term>Glutathione</term>
<term>Iron</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Sulfur</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Aconitate hydratase</term>
<term>Apoenzymes</term>
<term>Fer</term>
<term>Glutarédoxines</term>
<term>Glutathion</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Soufre</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Enzyme Activation</term>
<term>Protein Binding</term>
<term>Spectrum Analysis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Activation enzymatique</term>
<term>Analyse spectrale</term>
<term>Liaison aux protéines</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Saccharomyces cerevisiae mitochondrial glutaredoxin 5 (Grx5) is the archetypical member of a ubiquitous class of monothiol glutaredoxins with a strictly conserved CGFS active-site sequence that has been shown to function in biological [Fe2S2](2+) cluster trafficking. In this work, we show that recombinant S. cerevisiae Grx5 purified aerobically, after prolonged exposure of the cell-free extract to air or after anaerobic reconstitution in the presence of glutathione, predominantly contains a linear [Fe3S4](+) cluster. The excited-state electronic properties and ground-state electronic and vibrational properties of the linear [Fe3S4](+) cluster have been characterized using UV-vis absorption/CD/MCD, EPR, Mössbauer, and resonance Raman spectroscopies. The results reveal a rhombic S = 5/2 linear [Fe3S4](+) cluster with properties similar to those reported for synthetic linear [Fe3S4](+) clusters and the linear [Fe3S4](+) clusters in purple aconitase. Moreover, the results indicate that the Fe-S cluster content previously reported for many monothiol Grxs has been misinterpreted exclusively in terms of [Fe2S2](2+) clusters, rather than linear [Fe3S4](+) clusters or mixtures of linear [Fe3S4](+) and [Fe2S2](2+) clusters. In the absence of GSH, anaerobic reconstitution of Grx5 yields a dimeric form containing one [Fe4S4](2+) cluster that is competent for in vitro activation of apo-aconitase, via intact cluster transfer. The ligation of the linear [Fe3S4](+) and [Fe4S4](2+) clusters in Grx5 has been assessed by spectroscopic, mutational, and analytical studies. Potential roles for monothiol Grx5 in scavenging and recycling linear [Fe3S4](+) clusters released during protein unfolding under oxidative stress conditions and in maturation of [Fe4S4](2+) cluster-containing proteins are discussed in light of these results. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24032439</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>05</Month>
<Day>05</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1520-5126</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>135</Volume>
<Issue>40</Issue>
<PubDate>
<Year>2013</Year>
<Month>Oct</Month>
<Day>09</Day>
</PubDate>
</JournalIssue>
<Title>Journal of the American Chemical Society</Title>
<ISOAbbreviation>J Am Chem Soc</ISOAbbreviation>
</Journal>
<ArticleTitle>Monothiol glutaredoxins can bind linear [Fe3S4]+ and [Fe4S4]2+ clusters in addition to [Fe2S2]2+ clusters: spectroscopic characterization and functional implications.</ArticleTitle>
<Pagination>
<MedlinePgn>15153-64</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/ja407059n</ELocationID>
<Abstract>
<AbstractText>Saccharomyces cerevisiae mitochondrial glutaredoxin 5 (Grx5) is the archetypical member of a ubiquitous class of monothiol glutaredoxins with a strictly conserved CGFS active-site sequence that has been shown to function in biological [Fe2S2](2+) cluster trafficking. In this work, we show that recombinant S. cerevisiae Grx5 purified aerobically, after prolonged exposure of the cell-free extract to air or after anaerobic reconstitution in the presence of glutathione, predominantly contains a linear [Fe3S4](+) cluster. The excited-state electronic properties and ground-state electronic and vibrational properties of the linear [Fe3S4](+) cluster have been characterized using UV-vis absorption/CD/MCD, EPR, Mössbauer, and resonance Raman spectroscopies. The results reveal a rhombic S = 5/2 linear [Fe3S4](+) cluster with properties similar to those reported for synthetic linear [Fe3S4](+) clusters and the linear [Fe3S4](+) clusters in purple aconitase. Moreover, the results indicate that the Fe-S cluster content previously reported for many monothiol Grxs has been misinterpreted exclusively in terms of [Fe2S2](2+) clusters, rather than linear [Fe3S4](+) clusters or mixtures of linear [Fe3S4](+) and [Fe2S2](2+) clusters. In the absence of GSH, anaerobic reconstitution of Grx5 yields a dimeric form containing one [Fe4S4](2+) cluster that is competent for in vitro activation of apo-aconitase, via intact cluster transfer. The ligation of the linear [Fe3S4](+) and [Fe4S4](2+) clusters in Grx5 has been assessed by spectroscopic, mutational, and analytical studies. Potential roles for monothiol Grx5 in scavenging and recycling linear [Fe3S4](+) clusters released during protein unfolding under oxidative stress conditions and in maturation of [Fe4S4](2+) cluster-containing proteins are discussed in light of these results. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Bo</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia , Athens, Georgia 30602, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bandyopadhyay</LastName>
<ForeName>Sibali</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Shakamuri</LastName>
<ForeName>Priyanka</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Naik</LastName>
<ForeName>Sunil G</ForeName>
<Initials>SG</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Huynh</LastName>
<ForeName>Boi Hanh</ForeName>
<Initials>BH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Couturier</LastName>
<ForeName>Jérémy</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rouhier</LastName>
<ForeName>Nicolas</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Johnson</LastName>
<ForeName>Michael K</ForeName>
<Initials>MK</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM047295</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM47295</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM062524</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM62524</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R37 GM062524</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>09</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Am Chem Soc</MedlineTA>
<NlmUniqueID>7503056</NlmUniqueID>
<ISSNLinking>0002-7863</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001051">Apoenzymes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C528773">Grx5 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>70FD1KFU70</RegistryNumber>
<NameOfSubstance UI="D013455">Sulfur</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>E1UOL152H7</RegistryNumber>
<NameOfSubstance UI="D007501">Iron</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 4.2.1.3</RegistryNumber>
<NameOfSubstance UI="D000154">Aconitate Hydratase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000154" MajorTopicYN="N">Aconitate Hydratase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001051" MajorTopicYN="N">Apoenzymes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004789" MajorTopicYN="N">Enzyme Activation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007501" MajorTopicYN="N">Iron</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013057" MajorTopicYN="Y">Spectrum Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013455" MajorTopicYN="N">Sulfur</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>9</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>9</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>5</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24032439</ArticleId>
<ArticleId IdType="doi">10.1021/ja407059n</ArticleId>
<ArticleId IdType="pmc">PMC3836218</ArticleId>
<ArticleId IdType="mid">NIHMS527558</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2011 Aug 5;286(31):27515-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21632542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2004 Feb 24;43(7):2007-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14967041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Inorg Chem. 2002 Apr;7(4-5):357-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11941493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1992 Aug 5;267(22):15502-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1639790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2010 Jan;35(1):43-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19811920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2010 Oct 6;12(4):373-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20889129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Jul 1;280(26):24544-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15833738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1988;158:357-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3374387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2012 Jun 5;51(22):4377-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22583368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Inorg Chem. 1999 Apr 19;38(8):1847-1865</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11670957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2010 Apr 2;394(2):372-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20226171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2007 Jun 12;46(23):6804-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17506525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 Oct 13;48(40):9569-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19715344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Aug 18;436(7053):1035-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16110529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1997 Aug 1;277(5326):653-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9235882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2008 Apr 9;27(7):1122-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18354500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Jul 11;278(28):25745-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1990 May 25;265(15):8533-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2160461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Jun 10;94(12):6087-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9177174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1984 Dec 10;259(23):14463-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6094558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1988 Jun 15;263(17):8194-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2836417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Oct 4;277(40):37590-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12138088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2000 Jul 11;39(27):7856-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10891064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2012 Feb 28;51(8):1687-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22309771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2011 Oct 18;50(41):8957-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21899261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Jan 28;275(4):2745-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10644738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Feb 27;279(9):7785-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14672937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1999 Aug 10;38(32):10594-605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10441157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2007 Jun 12;46(23):6812-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17506526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2002 Apr;13(4):1109-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11950925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2007 Dec 25;46(51):15018-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18044966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2006 Apr 17;580(9):2273-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16566929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2004 Jul 15;427(2):154-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15196989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2001 Oct 17;123(41):10121-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11592901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2013 Jun;24(12):1830-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23615440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2012 Oct 16;51(41):8071-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23003323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2010 May;120(5):1749-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20364084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2003 Dec;270(23):4736-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14622262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 May 16;283(20):14092-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18339629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2012 Sep 19;134(37):15213-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22963613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2011 Jan 15;433(2):303-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21029046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 Jul 7;48(26):6041-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19505088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1999 Dec;19(12):8180-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10567543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2003 Sep 15;22(18):4815-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12970193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 1999 Jul;1(3):130-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10559898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comp Funct Genomics. 2004;5(4):328-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18629168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Jul 26;277(30):26944-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12011041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Apr 4;283(14):8868-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18216016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Inorg Chem. 2004 Dec;9(8):987-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15578277</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Bandyopadhyay, Sibali" sort="Bandyopadhyay, Sibali" uniqKey="Bandyopadhyay S" first="Sibali" last="Bandyopadhyay">Sibali Bandyopadhyay</name>
<name sortKey="Couturier, Jeremy" sort="Couturier, Jeremy" uniqKey="Couturier J" first="Jérémy" last="Couturier">Jérémy Couturier</name>
<name sortKey="Huynh, Boi Hanh" sort="Huynh, Boi Hanh" uniqKey="Huynh B" first="Boi Hanh" last="Huynh">Boi Hanh Huynh</name>
<name sortKey="Johnson, Michael K" sort="Johnson, Michael K" uniqKey="Johnson M" first="Michael K" last="Johnson">Michael K. Johnson</name>
<name sortKey="Naik, Sunil G" sort="Naik, Sunil G" uniqKey="Naik S" first="Sunil G" last="Naik">Sunil G. Naik</name>
<name sortKey="Rouhier, Nicolas" sort="Rouhier, Nicolas" uniqKey="Rouhier N" first="Nicolas" last="Rouhier">Nicolas Rouhier</name>
<name sortKey="Shakamuri, Priyanka" sort="Shakamuri, Priyanka" uniqKey="Shakamuri P" first="Priyanka" last="Shakamuri">Priyanka Shakamuri</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Zhang, Bo" sort="Zhang, Bo" uniqKey="Zhang B" first="Bo" last="Zhang">Bo Zhang</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000735 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000735 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24032439
   |texte=   Monothiol glutaredoxins can bind linear [Fe3S4]+ and [Fe4S4]2+ clusters in addition to [Fe2S2]2+ clusters: spectroscopic characterization and functional implications.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24032439" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020